IIIII

(3 Droof

= Bring trust into your projects

Blockchain Security | Smart Contract Audits | KYC

MADE IN GERMANY

Affinity

Audit

Security Assessment
05. September, 2022

For

AFFINITY
Yy SolidProof io A @solidproof io

https://twitter.com/SolidProof_io
https://t.me/solidproof_io

Disclaimer
Description

Project Engagement
Logo

Contract Link
Methodology

Used Code from other Frameworks/Smart Contracts (direct imports)

Tested Contract Files
Source Lines

Risk Level

Capabilities

Inheritance Graph

CallGraph

Scope of Work/Verify Claims
Modifiers and public functions
Source Units in Scope
Critical issues

High issues

Medium issues

Low issues

Informational issues
Alleviation

Audit Comments

SWC Attacks

oo N o o o O W

10
11
12
13
14
24
26
27
27
27
27
27
29
29
30

Disclaimer

SolidProof.io reports are not, nor should be considered, an “endorsement”
or “disapproval” of any particular project or team. These reports are not,
nor should be considered, an indication of the economics or value of any
“product” or “asset” created by any team. SolidProof.io do not cover
testing or auditing the integration with external contract or services (such
as Unicrypt, Uniswap, PancakeSwap etc'..)

SolidProof.io Audits do not provide any warranty or guarantee
regarding the absolute bug- free nature of the technology analyzed,
nor do they provide any indication of the technology proprietors.
SolidProof Audits should not be used in any way to make decisions
around investment or involvement with any particular project. These
reports in no way provide investment advice, nor should be leveraged
as investment advice of any sort.

SolidProof.io Reports represent an extensive auditing process intending to
help our customers increase the quality of their code while reducing the
high level of risk presented by cryptographic tokens and blockchain
technology. Blockchain technology and cryptographic assets present a
high level of ongoing risk. SolidProof’s position is that each company and
individual are responsible for their own due diligence and continuous
security. SolidProof in no way claims any guarantee of security or

functionality of the technology we agree to analyze.

Version Date Description

1.0 05. September 2022 - Layout project
- Automated- /Manual-Security Testing
- Summary

http://SolidProof.io

Network
Binance Smart Chain (BEP20)

Website
https://affinitybsc.com/index.html

Telegram
https://t. me/Safe_Affinity

Twitter
https:/twitter.com/AffinityBSC

Reddit
https://reddit.com/r/affinitybsc

Discord
https://discord.ga/xv5lyaDpK2

https://affinitybsc.com/index.html
https://t.me/Safe_Affinity
https://twitter.com/AffinityBSC
https://reddit.com/r/affinitybsc
https://discord.gg/xv5JyaDpK2

Description
TBA

Project Engagement

During the 3rd of September 2022, Affinity Team engaged Solidproof.io
to audit smart contracts that they created. The engagement was
technical in nature and focused on identifying security flaws in the design
and implementation of the contracts. They provided Solidproof.io with
access to their code repository and whitepaper.

Logo

a

Contract Link
v1.0

Provided as files

Vulnerability & Risk Level

Risk represents the probability that a certain source-threat will exploit
vulnerability, and the impact of that event on the organization or system.
Risk Level is computed based on CVSS version 3.0.

Medium

4-69

A vulnerability that
can disrupt the
contract functioning
in @ number of
scenarios, or creates a
risk that the contract
may be broken.

A vulnerability that
affects the desired
outcome when using
a contract, or provides
the opportunity to
use a contract in an
unintended way.

A vulnerability that
could affect the
desired outcome of
executing the
contract in a specific
scenario.

A vulnerability that
does not have a
significant impact on
possible scenarios for
the use of the
contract and is
probably subjective.

A vulnerability that
have informational
character but is not
effecting any of the
code.

Immediate action to
reduce risk level.

Implementation of
corrective actions as
soon aspossible.

Implementation of
corrective actionsin a
certain period.

Implementation of
certain corrective
actions or accepting
the risk.

An observation that
does not determine a
level of risk

Auditing Strategy and Techniques
Applied

Throughout the review process, care was taken to evaluate the repository
for security-related issues, code quality, and adherence to specification
and best practices. To do so, reviewed line-by-line by our team of expert
pentesters and smart contract developers, documenting any issues as
there were discovered.

Methodology

The auditing process follows a routine series of steps:
1. Code review that includes the following:

i) Review of the specifications, sources, and instructions provided to SolidProof
to make sure we understand the size, scope, and functionality of the smart
contract.

ii) Manual review of code, which is the process of reading source code line-by-
line in an attempt to identify potential vulnerabilities.

iii) Comparison to specification, which is the process of checking whether the
code does what the specifications, sources, and instructions provided to
SolidProof describe.

2. Testing and automated analysis that includes the following:

i) Test coverage analysis, which is the process of determining whether the test
cases are actually covering the code and how much code is exercised when
we run those test cases.

ii) Symbolic execution, which is analysing a program to determine what inputs
causes each part of a program to execute.

3. Best practices review, which is a review of the smart contracts to improve efficiency,
effectiveness, clarify, maintainability, security, and control based on the established
industry and academic practices, recommendations, and research.

4. Specific, itemized, actionable recommendations to help you take steps to secure
your smart contracts.

Used Code from other Frameworks/Smart
Contracts (direct imports)

Imported packages:

IService
IServiceProvider

= bits

UsingFlags
UsingDefaultFlags
UsingFlagsWithStorage
UsingAdmin
AffinityFlags

AffinityFlagsWithStorage

UsingPermit
UsingERC20
UsingPermitWithStorage
UsingERC20WithStorage

Usinglnitializer

Tested Contract Files
This audit covered the following files listed below with a SHA-1 Hash.

A file with a different Hash has been modified, intentionally or otherwise,
after the security review. A different Hash could be (but not necessarily)
an indication of a changed condition or potential vulnerability that was
not within the scope of this review.

v1.0

File Name SHA-1 Hash
contracts/Affinity.sol f9536ef23bad7b7660608d46e79983936a493¢c36

Metrics

Source Lines
v1.0

I source | comment M single block I mixed
N empty I todo blockEmpty

D

Risk Level
v1.0

= overall average

perceivedComplexity
T
6
compilerVersion size
compilerFeatures numlLogicContracts

inlineDocumentation interfaceRisk

Capabilities

Components

Version Contracts

1.0 2

Exposed Functions

Libraries

Interfaces

Abstract

10

This section lists functions that are explicitly declared public or payable.
Please note that getter methods for public stateVars are not included.

Version Public Payable
1.0 33 0
Version External Internal Private Pure
10 29 111 1 31
State Variables
Version Total Public
10 11 1
Capabilities
Solidity Experim Can Uses
Version Versions ental Receive Assembl
observed Features Funds y
10 ~0.8.1 yes
3 (2 asm
blocks)
Low- Dele Uses EC
Version Transfer Level atecg Hash Rec
s ETH Calls I Function ove

S

r

View

49

Has
Destroya
ble
Contract
s

New/
Create/
Create2

11

1.0 yes yes

Inheritance Graph
v1.0

IServiceProvider

‘
]

UsingPermitWithStorage

12

CallGraph

v1.0

13

Scope of Work/Verify Claims

The above token Team provided us with the files that needs to be tested
(Github, Bscscan, Etherscan, files, etc.). The scope of the audit is the main
contract (usual the same name as team appended with .sol).

We will verify the following claims:

1.

® N0 UGN

Is contract an upgradeable

Correct implementation of Token standard
Deployer cannot mint any new tokens
Deployer cannot burn or lock user funds
Deployer cannot pause the contract

Deployer cannot set fees

Deployer cannot blacklist/antisnipe addresses
Overall checkup (Smart Contract Security)

14

Is contract an upgradeable

Name

Is contract an upgradeable?

15

Correct implementation of Token standard

ERC20

Function

Description

TotalSupply

Provides information about the total
token supply

BalanceOf

Provides account balance of the
owner's account

Transfer

Executes transfers of a specified
number of tokens to a specified
address

TransferFrom

Executes transfers of a specified
number of tokens from a specified
address

Approve

Allow a spender to withdraw a set
number of tokens from a specified
account

Allowance

Returns a set number of tokens
from a spender to the owner

Exist Tested Verified

16

Write functions of contract
v1.0

permit

setDecimals

setFlags

setName

setProvider

setSymbol

transfer

transferFrom

unpause

17

Deployer cannot mint any new tokens

Name

Deployer cannot mint

Max / Total Supply

Exist Tested Status

Comments:

v1.0
The totalsupply will be set while deploying

18

Deployer cannot burn or lock user funds

Name Exist Tested Status

Deployer cannot lock

Deployer cannot burn

Comments:

v1.0

Owner can lock user funds by
blacklisting addresses with “Blocked_Flag” flag
Pausing contract with “Transfer_Disabled_Flag” flag

Tokens
can be burned by msg.sender

19

Deployer cannot pause the contract

Name

Deployer cannot pause

Comments:

v1.0

Owner can pause contract

Exist Tested Status

20

Deployer cannot set fees

Name Exist Tested Status

Deployer cannot set fees over 25%

Deployer cannot set fees to nearly 100% or to 100%

Comments:

v1.0
The fee provider was not provided to solidproof. We cannot be sure
that the fees cannot be set to 100 and above. Please do your own
research here.

21

Deployer can blacklist/antisnipe addresses

Name Exist Tested Status

Deployer cannot blacklist/antisnipe addresses

Comments:

v1.0

Owner can blackilst (here: block) addresses

22

Overall checkup (Smart Contract Security)

Tested Verified

Legend

Attribute Symbol

Verified / Checked

Partly Verified

Unverified / Not checked

Not available

23

Modifiers and public functions
v1.0

setProvider
® requires
pause
® requires
unpause
® requires
setName
® requires
setSymbol
® requires

setDecimals

® requires

burn

transfer

® requires
transferFrom

® requires
permit

® requires
approve

® requires

Comments
Deployer can enable/disable following state variables
pause with _-TRANSFER_DISABLED_FLAG flag for the contract
address

Deployer can set following addresses
_provider

Existing Modifiers
_INITIALIZED_FLAG
_TRANSFER_DISABLED_FLAG
_PROVIDER_FLAG

24

_SERVICE_FLAG

_NETWORK_FLAG
_SERVICE_EXEMPT_FLAG
_ADMIN_FLAG

_BLOCKED_FLAG

_ROUTER_FLAG

_FEE_EXEMPT_FLAG
_SERVICES_DISABLED_FLAG
_PERMITS_ENABLED_FLAG
_TRANSFER_DISABLED_FLAG
_LP_PAIR_FLAG
_REWARD_EXEMPT_FLAG
_TRANSFER_LIMIT_DISABLED_FLAG
_PER_TX_SELL_LIMIT_DISABLED_FLAG
_24HR_SELL_LIMIT_DISABLED_FLAG
_REWARD_DISTRIBUTION_DISABLED_FLAG
_REWARD_SWAP_DISABLED_FLAG

There are several authorities which are authorized to call some
functions, that means, if the owner is renounced, another address is
still authorized to call functions

Be aware of this
We recommend you to pass an extra variable to the errors with a string
to clarify the error to the investor without comparing the “set” and
“cleared” parameters all the time. This makes it easier to understand
the error

Please check if an OnlyOwner or similar restrictive modifier has been
forgotten.

25

Source Units in Scope

v1.0

Type File
28 & | contracts/Affinity.sol

P2 10K Totals

Legend
Attribute

Lines

nLines

nSLOC

Comment Lines

Complexity Score

Logic Contracts Interfaces Lines nLines nSLOC Comment Lines Complex. Score = Capabilities

13 2 826 778 494 162 473 mE ‘s
13 2 826 778 494 162 473 -E ‘s
Description

total lines of the source unit

normalised lines of the source unit (e.g. normalises functions
spanning multiple lines)

normalised source lines of code (only source-code lines; no
comments, no blank lines)

lines containing single or block comments

a custom complexity score derived from code statements that
are known to introduce code complexity (branches, loops, calls,
external interfaces, ...)

26

Audit Results

Critical issues

No critical issues

High issues

No high issues

Medium issues

No medium issues
Please read the Alleviation section down below

Low issues

Issue

#1

#H2

#3

H4

#5

File

Main

Main

Main

Main

Main

Type

A floating pragma is set

Missing Zero Address
Validation (missing-
zero-check)

State variable visibility
is not set

Missing Events
Arithmetic

State variables are not
resettable

Informational issues

Issue

File

Type

Line

2

129, 252, 256,

388, 508,
521, 545,

280, 599,
614, 626,
637,763,
807

751 - 754

781-791

Line

766

Description

The current pragma Solidity
directive is ,“A0.8.13"".

Check that the address is not
zero

It is best practice to set the
visibility of state variables
explicitly

Emit an event for critical
parameter changes

You cannot reset the name,
symbol or decimals after
deploying.

Remove the setter functions.

Description

27

#1

#2

#3

#4

Main

Main

Main

Main

Functions that are not
used

NatSpec
documentation
missing

Function can be
restricted to pure

Wrong comment

288-290
312-314
308-310
320-322
328-330
316-318
324-326
207-209
211-213
605-607
587-589
650

653

657

656

654

655
87-90
67-69

See
description

613

Remove unused functions or
use it in the contract.

Before removing check the
function, it could be possible,
that you forget to implement
it into the contract

If you started to comment
your code, also comment all
other functions, variables etc.

Following functions can be
restricted to pure:

- defaultFlags L219
- flags L336

We recommend you to
remove this comment from
the function and add it to the
“transfer” and “transferFrom”
function because the zero
check is not explicitly in this
function.

This can lead to problems

later if the developer is not
attentive.

28

Alleviation

Medium issues

#1

Type: Contract can over-/underflow

Line: 615-618

Description:

It is possible that the contract can over-/underflow because the balance
setting is in the unchecked scope. (Also burning)

Basically contracts above floating pragma version 0.8.x are checking the
issue by themselves but in this case the balance setting isin an
unchecked scope which prevents the handling of this issue.

Affinity team: The checks are preformed in the transfer & transferFrom.
Those are the only two methods that use that function making it
impossible to overflow & underflow.

Audit Comments
05. September 2022:

The fee provider was not provided to solidproof. We cannot be sure
that the fees cannot be set to 100 and above. Please do your own
research here.

Read whole report and modifiers section for more information

29

SWC Attacks

ID

0
=

3

B &

‘m
=

I

‘m
=

s

n
=

O

HRE K]

‘m
=

6L

n
=

3

BRE R

Title

Unencrypted
Private Data
On-Chain

Code With No
Effects

Message call
with
hardcoded
gas amount

Hash
Collisions With
Multiple
Variable
Length
Arguments

Unexpected
Ether balance

Presence of
unused
variables

Right-To-Left-
Override
control
character
(U+202E)

Typographical
Error

DoS With
Block Gas
Limit

Relationships

CWE-767: Access to Critical
Private Variable via Public
Method

CWE-1164: Irrelevant Code

CWE-655: Improper
Initialization

CWE-294: Authentication
Bypass by Capture-replay

CWE-667: Improper Locking

CWE-1164: Irrelevant Code

CWE-451: User Interface (Ul)
Misrepresentation of Critical

Information

CWE-480: Use of Incorrect
Operator

CWE-400: Uncontrolled
Resource Consumption

Status

30

https://swcregistry.io/docs/SWC-136
https://cwe.mitre.org/data/definitions/767.html
https://swcregistry.io/docs/SWC-135
https://cwe.mitre.org/data/definitions/1164.html
https://swcregistry.io/docs/SWC-134
https://cwe.mitre.org/data/definitions/665.html
https://swcregistry.io/docs/SWC-133
https://cwe.mitre.org/data/definitions/294.html
https://swcregistry.io/docs/SWC-132
https://cwe.mitre.org/data/definitions/667.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-131
https://cwe.mitre.org/data/definitions/1164.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-130
http://cwe.mitre.org/data/definitions/451.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-129
https://cwe.mitre.org/data/definitions/480.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-128
https://cwe.mitre.org/data/definitions/400.html

‘m
=

N

=

s

‘m
=

R [2

0
=

O

RRE R

‘m
=

STe

‘m
=

oL

0 |ooQ‘m m‘(p‘m
‘E ‘:5 LS

N ‘(‘)
1

Arbitrary
Jump with
Function Type
Variable

Incorrect
Inheritance
Order

Write to
Arbitrary
Storage
Location

Requirement
Violation

Lack of Proper
Signature
Verification

Missing
Protection
against
Signature
Replay Attacks

Weak Sources
of
Randomness
from Chain
Attributes

Shadowing
State Variables

Incorrect
Constructor
Name

Signature
Malleability

CWE-695: Use of Low-Level
Functionality

CWE-696: Incorrect Behavior
Order

CWE-123: Write-what-where
Condition

CWE-573: Improper Following
of Specification by Caller

CWE-345: Insufficient
Verification of Data
Authenticity

CWE-347: Improper
Verification of Cryptographic

Signature

CWE-330: Use of Insufficiently
Random Values

CWE-710: Improper Adherence

to Coding Standards

CWE-665: Improper
Initialization

CWE-347: Improper
Verification of Cryptographic

Signature

31

https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-127
https://cwe.mitre.org/data/definitions/695.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-125
https://cwe.mitre.org/data/definitions/696.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-124
https://cwe.mitre.org/data/definitions/123.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-123
https://cwe.mitre.org/data/definitions/573.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-122
https://cwe.mitre.org/data/definitions/345.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-121
https://cwe.mitre.org/data/definitions/347.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-120
https://cwe.mitre.org/data/definitions/330.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-119
http://cwe.mitre.org/data/definitions/710.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-118
http://cwe.mitre.org/data/definitions/665.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-117
https://cwe.mitre.org/data/definitions/347.html

[¥a] [ON'e) ‘U)
‘5 ‘: s

[€p ‘O
1

‘m
=

IS ‘Q

[¥a] N O ‘U)
‘5 ‘: s

N ‘O
1

=

I—‘O
a
—

wn o 10 |\
2 PLE

8 [2

=

& 2

‘m
=

RE

‘m
=

82

Timestamp
Dependence

Authorization
through
tx.origin

Transaction
Order
Dependence

DoS with
Failed Call

Delegatecall
to Untrusted
Callee

Use of
Deprecated
Solidity
Functions

Assert
Violation

Uninitialized
Storage
Pointer

State Variable
Default
Visibility

Reentrancy

Unprotected
SELFDESTRUC
T Instruction

CWE-829: Inclusion of
Functionality from Untrusted
Control Sphere

CWE-477: Use of Obsolete
Function

CWE-362: Concurrent
Execution using Shared
Resource with Improper
Synchronization ('Race

Condition')

CWE-703: Improper Check or
Handling of Exceptional
Conditions

CWE-829: Inclusion of
Functionality from Untrusted
Control Sphere

CWE-477: Use of Obsolete
Function

CWE-670: Always-Incorrect
Control Flow Implementation

CWE-824: Access of
Uninitialized Pointer

CWE-710: Improper Adherence
to Coding Standards

CWE-841: Improper
Enforcement of Behavioral
Workflow

CWE-284. Improper Access
Control

https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-116
https://cwe.mitre.org/data/definitions/829.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-115
https://cwe.mitre.org/data/definitions/477.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-114
https://cwe.mitre.org/data/definitions/362.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-113
https://cwe.mitre.org/data/definitions/703.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-112
https://cwe.mitre.org/data/definitions/829.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-111
https://cwe.mitre.org/data/definitions/477.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-110
https://cwe.mitre.org/data/definitions/670.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-109
https://cwe.mitre.org/data/definitions/824.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-108
https://cwe.mitre.org/data/definitions/710.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-107
https://cwe.mitre.org/data/definitions/841.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-106
https://cwe.mitre.org/data/definitions/284.html

=

3

n
=

O

geE K|

‘m
=

B

=

El

‘m
=

|O |(')
O |4

Unprotected
Ether
Withdrawal

Unchecked
Call Return
Value

Floating
Pragma

Outdated
Compiler
Version

Integer
Overflow and
Underflow

Function
Default
Visibility

CWE-284. Improper Access
Control

CWE-252: Unchecked Return
Value

CWE-664: Improper Control of
a Resource Through its
Lifetime

CWE-937: Using Components
with Known Vulnerabilities

CWE-682: Incorrect
Calculation

CWE-710: Improper Adherence

to Coding Standards

33

https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-105
https://cwe.mitre.org/data/definitions/284.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-104
https://cwe.mitre.org/data/definitions/252.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-103
https://cwe.mitre.org/data/definitions/664.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-102
http://cwe.mitre.org/data/definitions/937.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-101
https://cwe.mitre.org/data/definitions/682.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-100
https://cwe.mitre.org/data/definitions/710.html

Yy SolidProof io A @solidproof io

Blockchain Security | Smart Contract Audits | KYC

MADE IN GERMANY

https://t.me/solidproof_io
https://twitter.com/SolidProof_io

	Disclaimer
	Description
	Project Engagement
	Logo
	Contract Link
	Methodology
	Used Code from other Frameworks/Smart Contracts (direct imports)
	Tested Contract Files
	Source Lines
	Risk Level
	Capabilities
	Inheritance Graph
	CallGraph
	Scope of Work/Verify Claims
	Modifiers and public functions
	Source Units in Scope
	Critical issues
	High issues
	Medium issues
	Low issues
	Informational issues
	Alleviation
	Audit Comments
	SWC Attacks

